Faculty Adviser: Dr. Andres Lepage

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

Building Background

- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- New 20-story apartment building
- Overall height: 208 ft
- Total area: 260,000 ft²
- Estimated total cost: \$37.5 million
- Projected construction time: 177 days (9 months)

Client: Arizona State University

Southwest Student Housing Building

Site Map

Building Background

- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modular
- Uses prefabricated assemblies
- Slip-formed concrete cores
- No columns
- Erected using Lift Slab Construction
 - L'Ambiance Plaza, 1987

Building Background

Unique Features

Southwest Student Housing Building

Typical Floor Plan

Building Background

- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modular
- Uses prefabricated assemblies
- Slip-formed concrete cores
- No columns
- Erected using Lift Slab Construction
 - L'Ambiance Plaza, 1987

Building Background

Unique Features

Southwest Student Housing Building

Lift-Slab Construction

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Mat Foundation
 - Soil conditions

- Floor System

 - 3" metal deck

Structural Framing Plan

- Structural steel framing

- 3-1/4" lightweight concrete topping

- Building Background Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- - Gravity:

- Lateral:

Building Structural System

Southwest Student Housing Building

(3) 25' x 25' Concrete Cores

Gravity and Lateral system

Load Type	Load Value (psf)
Construction Dead Load	59
Superimposed Dead Load	15
Live Load	80
Façade Load	15
Snow Load	0

 $V_{wind} = 565 k$

Maximum drift = 2.74 in (h/400 = 6.24 in)

- Building Background
- Building Structural System
- **Problem Statement**
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

How versatile is this construction method?

- Building Background
- Building Structural System
- **Problem Statement**
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- How easily could it be redesigned for higher seismic loads?
 - How would the connection of the floor system to the core need
 - to change?

Southwest Student Housing Building

How versatile is this construction method?

- Building Background
- Building Structural System
- **Problem Statement**
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- How easily could it be redesigned for higher seismic loads?
 - to change?
- loading conditions?

Southwest Student Housing Building

How versatile is this construction method?

- How would the connection of the floor system to the core need
- How does the construction cost fluctuate for more extreme

- Building Background
- Building Structural System
- **Problem Statement**
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- How easily could it be redesigned for higher seismic loads?
 - to change?
- How does the construction cost fluctuate for more extreme loading conditions?
- What effect would the redesign have on the floor plan?

Southwest Student Housing Building

How versatile is this construction method?

• How would the connection of the floor system to the core need

- Building Background
- Building Structural System
- **Problem Statement**
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- How easily could it be redesigned for higher seismic loads?
 - to change?
- How does the construction cost fluctuate for more extreme loading conditions?
- What effect would the redesign have on the floor plan?
- How easily can this type of building attain a LEED
 - Certification in a cost-effective way?

Southwest Student Housing Building

How versatile is this construction method?

• How would the connection of the floor system to the core need

- Building Background
- Building Structural System
- Problem Statement
- **Proposed Solution**
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Relocate to SDC D
 - St Louis, Missouri
- Investigate ways to transfer diaphragm
 - shear to the cores
- Cost analysis
- Architectural evaluation
- Sustainability study

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- New design loads:
 - Grav Su

Base

- Assumption: no extreme torsional
 - irregularity (ASCE 7-05, 12.2.5.4)

Structural Investigations

Southwest Student Housing Building

ity Loads			
onstruction Dead L	oad	59	psf
perimposed Dead L	oad	15	psf
Live L	oad	80	psf
Façade L	oad	15	psf
Snow L	oad	20	psf
Shear		1001.4	kips

Special reinforced concrete shear walls

- $C_{s,new} = 0.027$
- W_{bldg,new} = 24,349 kips

- Trial sizing: 12", 16" and 18" walls
 - Used 16" walls for building weight

• Shear check: $t_{min} = 9.26$ in

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Trial wall thickness = 16"
- Minimum shear reinforcement
 - $V_c = 2678k >> V_{base} = 1001k$
- Minimum moment reinforcement
- Boundary elements
- Maximum compressive stress = 0.253f'_c

Core Design

Reinforcement details:

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Trial wall thickness = 16"
- Minimum shear reinforcement
 - $V_c = 2678k >> V_{base} = 1001k$
- Minimum moment reinforcement
- Boundary elements
- Maximum compressive stress = 0.253f'

Core Design

Reinforcement details:

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Coupling beams
 - Shear from ETABS model:

 - V_{coupling beam design} =158 kips

Structural Investigations

Core Design

 $V_{max,model (3rd floor)} = 130.7 kips$

Reinforcement details:

Southwest Student Housing Building

—#9's @ 5.4" o.c. (center them and maintain clear cover)

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modeling
 - 3 models (different core layouts)

Structural Investigations

Core Design

- Original design
- Option 1(minimal openings)
- Option 2 (consolidated openings)

Southwest Student Housing Building

Core Shapes

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modeling
 - 3 models (different core layouts)

Structural Investigations

Core Design

- Original design
- Option 1(minimal openings)
- Option 2 (consolidated openings)

Southwest Student Housing Building

Core Shapes

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modeling
 - 3 models (different core layouts)

Structural Investigations

Core Design

- Original design
- Option 1(minimal openings)
- Option 2 (consolidated openings)

Southwest Student Housing Building

Core Shapes

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Modeling
 - 3 models (different core layouts)

Structural Investigations

Core Design

- Original design
- Option 1(minimal openings)
- Option 2 (consolidated openings)

ETABS Outputs

Design	Original	Option 1	Option 2
ion (in.)	6.126	6.126	9.737
ion (in.)	-0.455	-0.888	-2.555
e 1 (sec)	3.943	2.167	2.783
e 2 (sec)	3.521	2.025	2.486
e 3 (sec)	3.319	1.797	2.332

- Max Deflect
- **Min Deflecti**
 - Mode
 - Mode
 - Mode

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- **Structural Investigations**
- Architectural Impact
- Sustainability Study
- Conclusion

- Focus: floor-to-core connection
 - Shear transfer

- Complexity
 - Coupling beams
 - Boundary elements
 - Construction method

Structural Investigations

Floor System Design

- 2 potential designs:
 - "Steel Collar" Design

 - core via shear studs embedded in the core
 - "Drag Strut" Design

Southwest Student Housing Building

Shear goes directly from diaphragm to

The beams running along each core act as collector elements, shear transfer is from beams to core via welds on elements embedded in core

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Structural Investigations

Floor System Design

- 2 potential designs:
 - "Steel Collar" Design

• "Drag Strut" Design

The beams running along each core act as

collector elements, shear transfer is from beams to core via welds on elements embedded in core

Southwest Student Housing Building

Shear goes directly from diaphragm to core via shear studs embedded in the core

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Structural Investigations

- 2 potential designs:
 - "Steel Collar" Design

 - core via shear studs embedded in the core
 - "Drag Strut" Design

Southwest Student Housing Building

Shear goes directly from diaphragm to

The beams running along each core act as collector elements, shear transfer is from beams to core via welds on elements embedded in core

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Bare Material C

Co Reinforc

Shear Othe **Difference from**

Cost Evaluation

Used bare material costs for evaluation

Costs			
Item	Original Design	Option 1	Option 2
ncrete	113373	247340	216553
ement	74385	381027	432258
Welds	0	1080	1080
r Studs	0	70553.6	6364.8
r Steel	0	2069809.2	2069809.2
tal (\$)	187757	2769810	2726064
n Origin	0	2582053	2538307

About the same for both options

Additional 8% of total construction cost

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

vf		ling and the	5	ν-	ſ
∩Ę					
4	BR	3	BR	2	B₽

Architectural Impact

Southwest Student Housing Building

Original Design

- Advantages
 - Easy access to cores
 - Regular
 - Modular
- Disadvantages
 - Numerous core penetrations
- Patterns
 - Bathrooms line the corridor

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

	2 5	,[
4 BR	3 BR	2 BF

Architectural Impact

Southwest Student Housing Building

Original Design

- Advantages
 - Easy access to cores
 - Regular
 - Modular
- Disadvantages
 - Numerous core penetrations
- Patterns
 - Bathrooms line the corridor

Structural Option

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- **Architectural Impact**
- Sustainability Study
- Conclusion

	2				
			Л		
4 B	R	3 8	3R	2	BF

Architectural Impact

- Advantages
 - No core penetrations
 - More usable area
- Disadvantages
 - Not as regular
 - Bathrooms are not as stacked

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- **Architectural Impact**
- Sustainability Study
- Conclusion

	~7				ŀ
4	BR	31	3R	2	BF

Architectural Impact

- Advantages
 - Easy access to cores
 - Modular
 - More usable area
 - Bathrooms are more stacked
- Disadvantages
 - Core penetrations

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

• LEED Certified status requires a minimum of 40 points

Sustainability Study

Goal

- Attain a minimum of LEED Certified status
 - with minimal, if any, cost investment

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Current design = 20 points

- Additional easily attainable points = 21
 - 3 of the 21 credits require money

- Landscaping to protect, restore and shade the site

Sustainability Study

LEED Point Evaluation

- Sheltered bike racks for 15% of residents

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Bike racks (1 credit)

 - Total cost = \$35,000

Sustainability Study

LEED Point Evaluation

- Estimated cost at about \$70/ft²
- Estimated area needed = 450 ft^2

(0.1% of total building cost)

Current design = 20 points

- Additional easily attainable points = 21
 - 3 of the 21 credits require money

 - shade the site

Southwest Student Housing Building

- Sheltered bike racks for 15% of residents - Landscaping to protect, restore and

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

- Landscaping (2 credits)

Sustainability Study

LEED Point Evaluation

- Total cost = \$200,000
 - (0.5% of total building cost)

Total estimated cost for 3 credits:

\$235,000

(0.6% of total building cost)

Current design = 20 points

- Additional easily attainable points = 21 • 3 of the 21 credits require money - Sheltered bike racks for 15% of residents

- Landscaping to protect, restore and
 - shade the site

Structural Option

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Structural, Architectural, Cost

- 8% more expensive (bare material) in SDC D
- Complicated connections
- Viability:
 - None. Extreme torsional irregularity.
 - Torsional amplification factor ≈ 2.5 for Option 1
 - Peer review?
 - Architecturally viable

Conclusion

Southwest Student Housing Building

Sustainability

- Can easily attain LEED Certified
 - Requires:

Initial time investment during preconstruction Monetary investment of 0.5 - 0.6% of total cost

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Thank You!

Southwest Student Housing Building

Questions or Comments?

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

Core Corner Details

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

Masses Modeled in ETABS

Model Masses

Roof	1.73E-06 k-sec2/in2
pical Floor	2.57E-06 k-sec2/in2
First Floor	3.16E-06 k-sec2/in2

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

Southwest Student Housing Building

Steel Collar Design

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

- Building Background
- Building Structural System
- Problem Statement
- Proposed Solution
- Structural Investigations
- Architectural Impact
- Sustainability Study
- Conclusion

Appendix

Southwest Student Housing Building 1000 Apache Boulevard East, Tempe, Arizona

